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Generic two-variable model of excitability

A. C. Ventura, G. B. Mindlin, and S. Ponce Dawson
Departamento de Fı´sica, FCEN, UBA Ciudad Universitaria, Pabello´n I (1428), Buenos Aires, Argentina

~Received 18 October 2001; published 10 April 2002!

We present a simple model that displays all classes of two-dimensional excitable regimes. One of the
variables of the model displays the usual spikes observed in excitable systems. Since the model is written in
terms of a ‘‘standard’’ vector field, it is always possible to fit it to experimental data displaying spikes in an
algorithmic way. In fact, we use it to fit a series of membrane potential recordings obtained in the medicinal
leech and time series generated with the FitzHugh-Nagumo equations and the excitability model of Eguı´a et al.
@Phys. Rev. E58, 2636~1998!#. In each case, we determine the excitability class of the corresponding system.
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I. INTRODUCTION

Excitable systems are ubiquitous in nature@1#. Excitabil-
ity is mainly a concept of biological origin and there is n
sharp mathematical definition of its meaning. It involves t
existence of a stable stationary solution~a fixed point! and a
threshold. Perturbations to this fixed point that are below
threshold make the system go back to the fixed point with
almost linear dynamics. Perturbations above this thresh
on the other hand, make the system undergo long excurs
in phase space before going back to the fixed point. Usu
for the dynamics to be excitable it is also required that t
long excursion be independent of the initial condition~after a
very short transient!. The paradigmatic example of excitab
dynamics is that of neuronal action potentials@2#. Yet, other
examples exist in as diverse systems as semiconductor l
with optical feedback@3#, reaction-diffusion systems@4#, etc.

The minimum dimensionality of an Euclidean pha
space in which a dynamical system can display excitabilit
two. Yet, even in such a simple case, different scenarios h
been proposed, compatible with the definition of excitabil
described before. For example, in neuroscience it is cust
ary to refer to excitability of class I and II@2#. In class I
excitability, the excitable nature of the dynamics is lost a
Hopf bifurcation, where a periodic orbit of finite frequenc
and zero amplitude is born. The fixed point~stationary state
in the excitable regime! loses its stability but continues t
exist. Class II comprises the systems in which the excita
nature is lost at an Andronov bifurcation, i.e., where a pe
odic orbit of infinite period and finite amplitude is born. I
this case, the stationary state of the excitable regime di
pears at an inverse saddle-node bifurcation. This classi
tion was first suggested by Hodgkin in 1948@2#.

Several dynamical models are used to describe excit
behavior. One of the most commonly used ones is
FitzHugh-Nagumo model@4#, particularly for parameter val
ues in which excitability of class I is present. The model
given by

v85v2
v3

3
2w1 i ,

w85F~v1a2bw!, ~1!
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where the primes stand for time derivatives. It correspond
a two-dimensional caricature of the phenomenologi
Hodgkin-Huxley system of equations that describe the
havior of the membrane potential and ion conductances
the squid giant axon@5#. One of the two variables in the
FitzHugh-Nagumo model (v) plays the role of the mem
brane potential, while the second variable~w! plays the role
of all three other variables accounting for the conductan
in the original Hodgkin-Huxley model. Dynamically, thi
simplified model behaves as displayed in Fig. 1~a!. For low
values of the parameteri, which represents an external cu
rent that is applied to the neuron, the system is excita
Beyond a critical value of the parameter, an oscillatory m
tion takes place. The bifurcation behind this qualitati
change is a Hopf bifurcation@2#.

Other researchers use Adler’s equation as a paradigm
excitability. This equation describes the dynamics of an
gular phaseu displaying excitability of class II. The behavio
of the system, ruled bydu/dt5m2cos(u) is qualitatively
different for m larger or smaller than one. In the first cas

FIG. 1. Examples of class I~a! and class II~b! excitability. ~a!
The Fitzhugh-Nagumo model, given by Eqs.~1! with F50.08, a
50.7, andb50.8. ~b! The model of Ref.@6#, given by Eqs.~2!. In
both figures, each region corresponds to a particular topolog
behavior. Different regions are separated by bifurcation curves
points. We have used the same set of labels throughout the pap
particular, label I corresponds to a situation with one stable li
cycle and a repellor, label II to a situation with one stable fix
point and label V to a situation with one stable fixed point, a sad
and a repellor. The curve separating region V from region I in~b!
corresponds to an Andronov bifurcation, and the point in~a! sepa-
rating region I and II corresponds to a Hopf bifurcation.
©2002 The American Physical Society31-1
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the variableu increases monotonically. In the latter case,
system presents two fixed points, one of them attracting
the system is perturbed from this state beyond the unst
fixed point, the decay onto the stationary solution occ
after a large excursion in phase space. Other systems
tinue to be presented in the literature. A two-dimensio
model for Euclidean variables was recently introduced to
count for class II excitability@6#. In this model, which is
given by the following equations:

x85y,

y85x2y2x31xy1e11e2x2, ~2!

excitability occurs as shown in region V of Fig. 1~b!. Three
fixed points are present in this region: an attractor, a sad
and a repellor. If the system is perturbed away from
attractor beyond the saddle point’s stable manifold, a la
excursion in phase space takes place. As in Adler’s sys
the loss of excitability towards the oscillatory regime occu
as the saddle and the attractor collide at a saddle-node b
cation. The global connection of the manifolds guarant
the appearance of oscillations, which are born with nonz
amplitude. These oscillations are born at the curve separa
regions V and I in Fig. 1~b!.

Excitable systems of class I and II present different c
lective behavior when coupled@2#. Coupling effectively
leads the individual~coupled! units to cross the correspond
ing bifurcation, generating oscillations. In the case of clas
units the frequency of the resulting oscillations is cluste
around a well-defined mean value, determined by the H
bifurcation. In the case of class II excitable units, the sit
tion is different: at an Andronov bifurcation, oscillations a
born with zero frequency. This frequency typically chang
very fast with the parameter as its value is moved away fr
the bifurcation value. Therefore, when coupling class II e
citable units there is a large range of available frequenc
which gives rise to collective behaviors that can be dis
guished from those observed in populations of coupled c
I systems. Noise also produces different signatures on e
class, because of the same reason. Therefore, it is of int
to distinguish between both types. In spite of this, achiev
a unified description is always appealing among other r
sons, because of the simplicity of having a single mod
instead of many different ones. A single model would p
vide an understanding of the basic common features un
lying all classes of excitability. In the case of coupled un
having a unified description would allow one to study tra
sitions among behaviors that so far have been studied w
a restricted model and, in doing so, it would be possible
find different, unexplored behaviors. Needless to say, un
standing the way in which a property of an excitable u
translates into a particular collective behavior is a most
portant issue since, in living organisms, excitable cells
interconnected forming populations that can display em
gent behavior.

The reason for the variety of models of excitability th
are present in the literature lies in the global nature of
dynamical components that are necessary to build an e
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able model. This contrasts with what occurs near local bif
cations. Namely, for nonlinear systems with a singular fix
point there is an algorithmic prescription to reduce the nu
ber of terms in the equations that rule the dynamics in
neighborhood of the singular fixed point~a procedure known
as normal form construction, see, e.g.,@7#!. However, unfold-
ing theory provides some tools to obtain global informati
from local analyses@8#. Building upon these ideas, we pro
vide in this paper a generic model that is able to display
two dimensional scenarios of excitability. Furthermore, t
model generates spiking signals, typical of excitable dyna
ics. Since its defining dynamical equations are written in
standard form, experimental data with spikes can be fitted
our model in a simple and algorithmic way. In principle, th
would mean that a single set of equations could be use
decide whether an experimentally observed excitable sys
with spikes was of class I or class II. Although we succe
fully identified the right excitability class when fitting dat
that had been generated with systems of known class,
cannot guarantee that this suggestive result will apply to
arbitrary system. In general, the identification of the exc
ability class requires either being able to explore the bif
cation in the deterministic case or inspecting the behavio
the system under the influence of noise.

The organization of the paper is as follows. In Sec. II w
present the model. In Sec. III we use it to fit neuronal reco
ings from the medicinal leech and other time series obtai
from well known models of excitable dynamics. In Sec.
we analyze its role in reaction-diffusion systems. Finally t
conclusions are summarized in Sec. V.

II. BUILDING A GENERIC MODEL OF EXCITABILITY

The fact that excitability is a feature that relies on glob
properties precludes, in principle, a systematic model der
tion. This is the reason underlying the large variety of mod
that appear in the literature. However, as stated in Ref.@8#,
given a system with a~very! degenerate singularity, the loca
study of the degenerate diagram and of its perturbations c
tains information that is of global character for the~less de-
generate! perturbations of the singular vector field. Th
statement provides a clue of how to go around the prob
of the global features of excitability. Namely, we will loo
for a singular vector field with a degenerate bifurcation d
gram that can unfold into less degenerate ones, som
which display class I and some of which display class
excitability. The first necessary feature of the model is
existence of a~stable! fixed point. On the other hand, w
need a singular vector field such that, arbitrarily close to
~in the space of vector fields! there are~i! vector fields with
a stable limit cycle whose size goes to zero as we get clo
to the singular vector field,~ii ! vector fields with three fixed
points, a pair of which is able to collide at a saddle-no
bifurcation. The winged cusp is the example of a degene
system in which a single fixed point can split up in thre
Furthermore, the unfolding of the cusp contains diagra
where these fixed points can collide~in pairs! at saddle-node
bifurcations. Therefore, we want to combine the cusp wit
Hopf bifurcation. In a way, we are looking at the~degener-
1-2
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GENERIC TWO-VARIABLE MODEL OF EXCITABILITY PHYSICAL REVIEW E 65 046231
ate! two-dimensional system with only one fixed point th
results from the collapse of one limit cycle and three fix
points @9#. The linear part of the resulting degenerate vec
field, at the fixed point, is the nilpotent matrix (00

01). Any
vector field with such a linear part can be written, up to th
order, as@10#

x85y,

y85Ax21Bxy1Cx2y1Dx3. ~3!

This corresponds to the Takens-Bogdanov normal form u
third order. We keep terms of up to third in order to guara
tee the existence of up to three fixed points in the unfold
of the degenerate system we are seeking. Now, for gen
values,A and D, Eqs. ~3! have two fixed points: (0,0) and
(2A/D,0). Therefore, we setA50 in order to have a unique
fixed point. Rescaling the variables,x, y, and time, Eqs.~3!
can be rewritten as

x85y,

y85
1

e
xy2x2y2x3, ~4!

where e.0 and the choice of negative cubic coefficien
guarantees the global attractive nature of the unique fi
point, x50, y50. Equation~4! is the degenerate syste
whose unfolding provides the expected generic model of
citability. It corresponds to a third-order Takens-Bogdan
normal form in which some of the quadratic coefficients va
ish. The parametere provides a measure of how excitable t
system is. As illustrated in Fig. 2 the smaller thee the more
excitable the system is, as reflected in both the size of
excursion in phase space after the fixed point is pertur
and how fast the trajectory eventually becomes indepen
of the initial condition.

We show now that an unfolding of this singular vect
field, given by

x85y,

y85m01m1x1m2y1
1

e
xy2x32x2y, ~5!

FIG. 2. Behavior of the system Eqs.~4! for e50.2 ~a! and e
51 ~b! and various initial conditions. Notice the different scale
the horizontal axis, which reflects the fact that phase space ex
sions become very large ase decreases.
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is able to display the different two-dimensional scenarios
excitability described in the Introduction. In Fig. 3, we di
play the phase portraits of the system form050.1 ande
50.2. Notice that in region I we find the typical two
dimensional excitability scenario associated to the FitzHu
Nagumo equations~class I excitabilty!. As m2 is increased, a
Hopf bifurcation takes place giving rise to oscillatory beha
ior ~as observed in region II!. Interesting enough, in this
phase portrait, this oscillation is destroyed at an Andron
bifurcation asm1 is increased towards region V, where thr
fixed point coexist: an attracting fixed point, a saddle, an
repellor. In region V, the stable manifold of the saddle acts
a threshold for perturbations of the attractor, as it is typica
class II excitability. Notice that we have labeled each top
logically distinct dynamical behavior with a different num
ber, keeping the same labeling as that in Fig. 1.

We have not proved that the unfolding~5! of Eqs. ~4! is
universal@8#. However, it does contain all the behaviors th
characterize the different models of excitability in the plan
This means that the model, as a family of flows that depe
on a set of parameters, not only displays excitable beha
for certain parameter values but also undergoes the bifu
tions that models of class I and class II excitability underg
This means that, given an excitable system of either class
class II, there is a change of variables that takes the co
sponding model system of equations into the form~5!, at
least for a range of parameter values that include the ex
able behavior and the bifurcation that characterizes the bi
cation class.

Depending on the parameter values, variablex displays
the typical spikes observed in excitable systems~see Figs.
4–6!. Thus, the model not only displays behaviors that
topologically equivalent to those observed in models of cl
I and class II excitability, but is also able to reproduce t
‘‘shape’’ of the corresponding spiking signals. Thus, given
spiking signal produced by an excitable system, we expec
find a set of parameters for which our model fits the signa
is important to note that the vector field in Eqs.~5! is stan-
dard, i.e., the dynamical variables are related to each othe
means of temporal derivation. Thus, the fitting of the mo
to the observed spiking signals is always possible and a

ur-

FIG. 3. The bifurcation diagram of the generic model of exc
ability given by Eqs.~5! with e50.2 andm050.1. Both the dia-
grams of class I and class II excitability~see Fig. 1! are contained in
it.
1-3
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rithmic @11#. We show several examples in the followin
section.

III. REPRODUCING OBSERVATIONS WITH THE MODEL

In this section we probe the ability of our model to repr
duce the spiking signals observed in three different excita
systems. The first system we analyze corresponds to an
perimental record of the membrane potential of a particu
neuron in the medicinal leech@12#. The neuron propagates a
action potential upon stimulation. We show in Fig. 4 o
action potential that arises due to a stimulus in the form o
square pulse of finite duration~solid line! and the equivalen
signal that we obtain using our model Eqs.~5! ~dashed line!.
We fitted the experimental record once the stimulation w
turned off: had we also included the part while the stimu
was on, we should have coupled our model equations
time-dependent stimulus. Basically, we wrote down our
neric model in the general form

x85y,

y85A1Bx1Cy1Dxy2Ex32Fx2y, ~6!

determined the values ofA, B, C, D, E, andF that provided
the best fit ofx(t) to the data and then rescaled the variab
so as to go back to the form~5!. In this way we could deter-
mine the region of parameter space where the fitting mo

FIG. 4. Membrane potential as a funcion of time recorded in
experiment done with the medicinal leech~solid line! and best fit
using the variablex(t) of the generic model Eqs.~5! ~dashed line!.
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belonged to. This is displayed in Fig. 7~a!, where we have
plotted a two-dimensional cut of the four-dimensional p
rameter space of Eqs.~5! that contained the point with the
fitting parameter values~the asterisk in the figure!. In par-
ticular, we can observe that the best fit corresponds t
region with only one fixed point. On the other hand, t
fitting procedure provided a value ofe50.333, which indi-
cates the excitability of the system. Given another set
experimental data, a similar procedure could have been u
to determine a higher dimensional model for the current s
tem when coupled to the time-dependent stimulus. In p
ticular, if we had a data set obtained with a square pu
stimulus of long enough duration, it would have been p
sible to fit the model in such a case and determine the
rameters that are mostly affected due to the stimulus. In
way, it would have been possible to construct the hig
dimensional model mentioned before.

We show in Fig. 5 the plot of a time series obtained via
numerical simulation of the FitzHugh-Nagumo equations~1!
~solid line! and two series that we obtained using our mo
Eqs. ~5! ~dashed line!. The simulation of the FitzHugh-
Nagumo equations was done usingi 50, F50.08, a50.7,
and b50.8 for which Eqs.~1! have only one fixed point,
which is stable. In this case we found one fit that reprodu
very well the spiking part of the signal, but which tende
quite slowly to the fixed point@shown in Fig. 5~b!# and an-
other one that reproduced better the approach to the fi

n FIG. 6. Time series ofy vs t obtained using Eqs.~2! with e1

50.15 ande251 ~solid line! and best fit using the variablex(t) of
the generic model Eqs.~5! ~dashed line!.
int
case,
FIG. 5. Time series ofv vs t obtained using the FitzHugh-Nagumo~1! with i 50, F50.08, a50.7, andb50.8 ~solid line! and two
possible fits using the variablex(t) of the generic model Eqs.~5! ~dashed line!. The fit in ~a! reproduces the approach towards the fixed po
very accurately, while the one in~b! reproduces the spiking part of the signal better, but tends quite slowly to the fixed point. In any
the flows generated with both sets of parameter values are topologically equivalent to one another.
1-4
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FIG. 7. Location in parameter space of the parameter values that give the best fits displayed in Fig. 4~a!, Fig. 5~b!, and Fig. 6~c!. In ~a!
the values of the other two parameters are:e50.333, m05230.5, in ~b! they aree50.0136, m052213, and in~c! e50.126, m0

50.395.
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point @shown in Fig. 5~a!#. In either case, the parameter va
ues of the generic model~5! belong to a similar region~a
region with only one fixed point!. We show the location of
the set of parameter values that corresponds to the fit of
5~a! in Fig. 7~b!. In this case, we obtainede50.0136, an
indication that the system is very excitable.

Finally, we fitted a data set obtained via a numerical sim
lation of Eqs. ~2!. We show the data~solid line! and the
corresponding fit~dashed line! in Fig. 6. The simulation of
Eqs.~2! was done usinge150.15 ande251, for which the
system lies in the region V of Fig. 1~b!. The fitting also
provides a set of parameter values for which the model s
tem ~5! has one stable fixed point, one saddle, and one
pellor. The value ofe obtained in this case ise50.13.

In the case of the fits to numerically generated data~Figs.
5 and 6!, a comparison of the location of the parameter v
ues in Fig. 7 with those that were used to generate the
sets shows that the model is able to reproduce the right
evolution in a region of parameter values in which the mo
system is topologically equivalent to the systems that ge
ated the data sets. Furthermore, in the case of system~2! we
also fitted data sets generated with parameter values
were closer, in parameter space, to the Andronov bifurca
@the curve separating regions V and I in Fig. 1~b!# obtaining
fitting parameter values that were also closer to the A
dronov bifurcation in the model system~5!. Finally, the val-
ues ofe obtained with the various fits provide some quan
tative measure of the excitability of the system. A
mentioned in the preceding section, small values of the
rametere in the model system~5! correspond to large excur
sions in phase space before the system relaxes back t
fixed point and to fast decays onto a trajectory that is in
pendent of the initial condition, two features of excitabilit
Thus, by fitting the model system to various data we a
obtain some sort of quantitative comparison of their ex
ability. In this respect we could say that the data set in Fig
is more excitable than the one in Fig. 6 and this one, in tu
is slightly more excitable than the one in Fig. 4.

IV. EXCITABLE REACTION-DIFFUSION SYSTEMS

So far we have focused on systems that can be descr
by sets of ordinary differential equations. However, exc
ability is also displayed by spatially extended systems a
sometimes, it is even defined within this setting. In partic
04623
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lar, in one-space dimension, an excitable~extended! system
can be defined as one that has a stable homogeneous st
ary solution, which also supports a traveling pulse~see, e.g.,
@13#!. This definition is also inspired in pulse propagation
nerves. Spatially extended excitable systems are usuall
reaction-diffusion type. Reaction-diffusion systems descr
the dynamics of dilute chemical components in solutio
Their study has increased steadily during the last years
their possible applications to living organisms@4#. Reaction-
diffusion systems display a large variety of patterns. It h
recently been proposed that the ubiquity of some of the p
terns and transitions observed in reaction-diffusion syste
@14# can be attributed to the underlying spatially homog
neous dynamics when this dynamics is described by a pla
vector field @15#. In particular, for the case of sets of tw
reaction-diffusion equations, it has been argued that the
istence and properties of certain patterns can be unders
in terms of the collection of planar vector fields that can
constructed via perturbations of the spatially homogene
evolution equations@16#. This idea has been applied to th
Gray-Scott model@17,18#

]u

]t
52uv21A~12u!1Du¹2u, ~7!

]v
]t

5uv22Bv1Dv¹2v, ~8!

to explain why it could display patterns that were similar
those observed in the ferrocyanide-iodide-sulfite~FIS! reac-
tion @14#, although the Gray-Scott model did not correspo
to an accurate representation of the chemical kinetics of
FIS reaction.

In the spatially homogeneous case the systems~7! and~8!
has one fixed point,u51, v50, that is stable for all positive
A andB ~the physically relevant region, which we will ana
lyze in this paper!. This stable fixed point can either be th
only one or can coexist with other two. For values ofA and
B for which the only spatially homogeneous fixed point
u51, v50, the spatially extended systems~7! and ~8! dis-
play a large variety of patterns@18#. These patterns arise as
response to a finite perturbation. Namely, initial conditio
that are arbitrarily close to the homogeneous fixed point
lax back to it, and a larger~finite! perturbation is necessar
for the system to settle onto a spatially inhomogeneous
1-5
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FIG. 8. The bifurcation set of the planar vec
tor field ~9! for A50.02 andB50.08 ~a! and for
A50.011 andB50.08 ~b!.
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tern ~that can also be time dependent!. Thus, the spatially
extended system is ‘‘excitable.’’ In particular, it is excitab
for the parameter values at which spot replications are
served. In Ref.@16# we argued that this excitable behavi
could be related to the proximity in parameter space t
saddle-repellor bifurcation, in such a way that diffusion
fectively acted as a perturbation that let the system ‘‘cro
the bifurcation.

One way to analyze the possible behaviors that the sys
may visit due to the effect of diffusion is to study the syste
of Eqs.~7! and~8! as a planar vector field with the diffusio
terms treated as parameters,Du[Du¹2u, Dv[Dv¹2v

u852uv21A~12u!1Du,

v85uv22Bv1Dv. ~9!

Equations~9! may be reduced to Eqs.~5! for values ofA and
B nearby those at which spot replications may be observ
In particular, for A50.02, B50.08, the reaction-diffusion
systems~7! and ~8! display spot replications forDu51 and
Dv50.5. We have found that for these values ofA and B,
Du5 8

9 A3AB2A'20.0026 and Dv5A3AB/9'0.0022,
Eqs.~9! have one fixed point atu* 52A3AB/3A'0.653 and
v* 5AA/3'0.082 with two zero eigenvalues. Defining ne
variables that are zero at this fixed point, performing
linear changes required to transform the linear part of
vector field into its associated Jordan form, keeping non
ear terms up to third order, and carrying the nonline
changes of variables required to write the system in its n
mal form, we obtain that, at these parameter values, Eqs~9!
can be reduced to

x85y,

y851.73xy2x32x2y, ~10!

in a neighborhood of the fixed pointu50.653 and v
50.082. Clearly, Eqs.~10! are equal to Eqs.~4! with e
50.58. Hence, Eqs.~9! for parameter values in a neighbo
hood of the chosen ones should include both tw
dimensional excitable regimes. This is, in fact, displayed
Fig. 8 where we have plotted the bifurcation set of Eqs.~9!
on two two-dimensional cuts of its four-dimensional para
eter space, in a neighborhood of the parameter valueA
50.02, B50.08, Du520.0026, andDv50.0022. Figure
8~a! corresponds to a cut withA50.02, B50.08 and Fig.
8~b! to one withA50.011, B50.08. Class I excitability is
contained in Fig. 8~a!, where region II corresponds to a situ
ation with one excitable fixed point that undergoes a H
04623
b-

a
-
’’

m

d.

e
e
-
r
r-

-
n

-

f

bifurcation on the curve that separates regions II and I.
particular, in region I there is one repellor surrounded b
stable limit cycle. Class II excitability is contained in bo
Figs. 8~a! and 8~b!. In fact, all four topologically distinct
behaviors displayed in Fig. 1~b! are contained in Fig. 8, al
though it is not easy to resolve all regions within the scale
the figures. In particular, region VI is too narrow but we ha
anyway indicated its approximate location with an arrow.
any case, the main feature of class II excitability, the A
dronov bifurcation, appears in Fig. 8~it occurs on the curve
that separates regions V and I!.

Figure 8 is an indication that the excitable features d
played by the Gray-Scott reaction-diffusion sytems~7! and
~8! at A50.02, B50.08, could be related to the fact th
diffusion effectively perturbs the system making it displ
the different classes of excitability encountered in other s
tems. Although we do not have a proof for this, having be
able to find our generic model in a simple extension of
Gray-Scott system@Eqs. ~9!# provides a useful set within
which spatiotemporal excitability can be studied. As me
tioned before, models of spatially extended excitable syste
are usually of reaction-diffusion type. On the other han
reaction-diffusion systems are usually analyzed in terms
inhibitor-activator systems. The Gray-Scott systems~7! and
~8! is a reaction-diffusion system of inhibitor-activator typ
with u the inhibitor andv the activator. If we add a constan
parameterDu to Eq. ~7! and a constant parameterDv to Eq.
~8!, the resulting system,

]u

]t
52uv21A~12u!1Du1Du¹2u

]v
]t

5uv22Bv1Dv1Dv¹2v, ~11!

still remains as an inhibitor-activator system. In the spatia
homogeneous case, this extended system reduces to our
eral model of excitability~5! for certain parameter values
Therefore, this simple extension of the Gray-Scott model
be used to analyze the transition of spatiotemporal soluti
of excitable reaction-diffusion systems of inhibitor-activat
type when the underlying homogeneous dynamics chan
from being of class I to being of class II excitability. W
think that this can be a very useful tool to study excitab
reaction-diffusion systems.

V. CONCLUSIONS

We have found a simple two-dimensional model@Eqs.
~5!# that is able to display all dynamical behaviors encou
1-6
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tered in models of class I and class II excitability. One of t
variables of the model~x! displays the spiking signals tha
are typical of excitable systems. Given that the model eq
tions are written in standard form, fitting the model to o
served spiking signals is always possible and algorithmic
fact, we have shown the ability of the model to reprodu
both experimental and numerically generated data obta
with different sorts of excitable systems. In this way, for t
cases analyzed, we could determine the excitability clas
which the system that generated the signal belongs. Fur
more, we also obtained a quantitative assessment of
excitability by looking at the value of one of the fitting pa
rameters (e).

We have found that the Gray-Scott reaction-diffusion s
tems~7! and ~8! contain the generic model@Eqs. ~5!# when
the diffusion terms are treated as parameters@as in Eqs.~9!#.
Thus, we think that the sort of excitable behavior that
f b
g
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reaction-diffusion Gray-Scott system displays for certain
rameter values can be understood as a consequence o
fact that diffusion perturbs the underlying homogeneous
namics in such a way that it effectively visits the behavio
displayed by our generic model of excitability. On the oth
hand, we have shown that a simple extension of the Gr
Scott model @Eqs. ~11!# provides an inhibitor-activator
reaction-diffusion system that, in the spatially homogene
limit, is able to display both class I and class II excitabilit
Thus, using Eqs.~11! it should be possible to study the rela
tionship between different types of reaction-diffusion exc
able systems by continuous prolongations of specific so
tions.

In conclusion, we have presented a general and sim
model that provides a unifying setting within which the va
ous features of excitability can be studied.
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