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Generic two-variable model of excitability
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We present a simple model that displays all classes of two-dimensional excitable regimes. One of the
variables of the model displays the usual spikes observed in excitable systems. Since the model is written in
terms of a “standard” vector field, it is always possible to fit it to experimental data displaying spikes in an
algorithmic way. In fact, we use it to fit a series of membrane potential recordings obtained in the medicinal
leech and time series generated with the FitzHugh-Nagumo equations and the excitability modéhet Bhui
[Phys. Rev. 58, 2636(1998]. In each case, we determine the excitability class of the corresponding system.

DOI: 10.1103/PhysReVvE.65.046231 PACS nuner05.40.Ca, 05.45:a, 42.55.Px
I. INTRODUCTION where the primes stand for time derivatives. It corresponds to
a two-dimensional caricature of the phenomenological
Excitable systems are ubiquitous in nat{it¢ Excitabil- Hodgkin-Huxley system of equations that describe the be-

ity is mainly a concept of biological origin and there is no havior of the membrane potential and ion conductances in
sharp mathematical definition of its meaning. It involves thethe squid giant axof5]. One of the two variables in the
existence of a stable stationary soluti@nfixed poinf and a  FitzHugh-Nagumo model«) plays the role of the mem-
threshold. Perturbations to this fixed point that are below thidrane potential, while the second variabl® plays the role
threshold make the system go back to the fixed point with awf all three other variables accounting for the conductances
almost linear dynamics. Perturbations above this thresholdn the original Hodgkin-Huxley model. Dynamically, this
on the other hand, make the system undergo long excursiorssmplified model behaves as displayed in Figg)1For low
in phase space before going back to the fixed point. Usuallyyalues of the parametér which represents an external cur-
for the dynamics to be excitable it is also required that thigent that is applied to the neuron, the system is excitable.
long excursion be independent of the initial conditiafter a  Beyond a critical value of the parameter, an oscillatory mo-
very short transient The paradigmatic example of excitable tion takes place. The bifurcation behind this qualitative
dynamics is that of neuronal action potentig$. Yet, other change is a Hopf bifurcatiof2].
examples exist in as diverse systems as semiconductor lasersOther researchers use Adler’s equation as a paradigm of
with optical feedback3], reaction-diffusion systenig], etc.  excitability. This equation describes the dynamics of an an-
The minimum dimensionality of an Euclidean phasegular phasé displaying excitability of class Il. The behavior
space in which a dynamical system can display excitability isof the system, ruled byl6/dt=u—cos() is qualitatively
two. Yet, even in such a simple case, different scenarios hawdifferent for u larger or smaller than one. In the first case,
been proposed, compatible with the definition of excitability

described before. For example, in neuroscience it is custom i (arb. units) (a) 2

ary to refer to excitability of class | and [2]. In class | 121 (b)
excitability, the excitable nature of the dynamics is lost at a 09+ o L5 1
Hopf bifurcation, where a periodic orbit of finite frequency 06l E

and zero amplitude is born. The fixed poistationary state 1 | £, 4
in the excitable regimeloses its stability but continues to — 03 Topf bifurcation.

exist. Class Il comprises the systems in which the excitable ol

nature is lost at an Andronov bifurcation, i.e., where a peri- r 03
odic orbit of infinite period and finite amplitude is born. In 03T I

this case, the stationary state of the excitable regime dissa  -0.6- O R e

pears at an inverse saddle-node bifurcation. This classifica €, (arb. units)

tion was first suggested by Hodgkin in 19¢3. o
Several dynamical models are used to describe excitable F!G: 1. Examples of class(g) and class li(b) excitability. ()

behavior. One of the most commonly used ones is thd "€ Fizhugh-Nagumo model, given by Eq$) with ©=0.08, a

FitzHugh-Nagumo moddH], particularly for parameter val- _0:7 ando=0.8. (b) The model of Ref[6], given by Egs(2). In

ues in which excitability of class | is present. The model isboth f'.gures.’ each region corresponds to a p‘.""rt'cm"?‘r topological
given by behavior. Different regions are separated by bifurcation curves or

points. We have used the same set of labels throughout the paper. In

particular, label | corresponds to a situation with one stable limit

, ) cycle and a repellor, label Il to a situation with one stable fixed

vEUvT g wHi, point and label V to a situation with one stable fixed point, a saddle,
and a repellor. The curve separating region V from region (bin
corresponds to an Andronov bifurcation, and the poinfajnsepa-

w =d(v+a—bw), (1) rating region | and Il corresponds to a Hopf bifurcation.
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the variabled increases monotonically. In the latter case, theable model. This contrasts with what occurs near local bifur-
system presents two fixed points, one of them attracting. I€ations. Namely, for nonlinear systems with a singular fixed
the system is perturbed from this state beyond the unstablgoint there is an algorithmic prescription to reduce the num-
fixed point, the decay onto the stationary solution occurder of terms in the equations that rule the dynamics in a
after a large excursion in phase space. Other systems coneighborhood of the singular fixed poif procedure known
tinue to be presented in the literature. A two-dimensionalas normal form construction, see, e[d@J). However, unfold-
model for Euclidean variables was recently introduced to acing theory provides some tools to obtain global information
count for class Il excitability{6]. In this model, which is from local analyse$8]. Building upon these ideas, we pro-

given by the following equations: vide in this paper a generic model that is able to display all
two dimensional scenarios of excitability. Furthermore, the

x'=y, model generates spiking signals, typical of excitable dynam-

ics. Since its defining dynamical equations are written in a

Y =X—y— X3+ XY+ €+ €,X2, (2)  standard form, experimental data with spikes can be fitted by

our model in a simple and algorithmic way. In principle, this
excitability occurs as shown in region V of Figikl. Three ~ Would mean that a single set of equations could be used to
fixed points are present in this region: an attractor, a saddi&lecide whether an experimentally observed excitable system
and a repellor. If the system is perturbed away from theVith Spikes was of class | or class II. Although we success-
attractor beyond the saddle point's stable manifold, a |argé,ully identified the right ex0|t_ab|I|ty class when fitting data
excursion in phase space takes place. As in Adler’s systeni@t had been generated with systems of known class, we
the loss of excitability towards the oscillatory regime occursC@nnot guarantee that this suggestive result will apply to an
as the saddle and the attractor collide at a saddle-node bifuPitrary system. In general, the identification of the excit-
cation. The global connection of the manifolds guarantee&Pility class requires either being able to explore the bifur-
the appearance of oscillations, which are born with nonzer&ation in the deterministic case or inspecting the behavior of

amplitude. These oscillations are born at the curve separatirig€ System under the influence of noise.
regions V and | in Fig. (b). The organization of the paper is as follows. In Sec. Il we

Excitable systems of class | and Il present different col-Present the model._ In Sec. lIl we use it to _fit neurc_JnaI recc_>rd-
lective behavior when couple@?]. Coupling effectively NS from the medicinal leech ar_1d other tlme_serles obtained
leads the individuaicoupled units to cross the correspond- fom well known models of excitable dynamics. In Sec. IV
ing bifurcation, generating oscillations. In the case of class V& @nalyze its role in reaction-diffusion systems. Finally the
units the frequency of the resulting oscillations is clustered-onclusions are summarized in Sec. V.
around a well-defined mean value, determined by the Hopf
bifurcation. In the case of class Il excitable units, the situa-
tion is different: at an Andronov bifurcation, oscillations are
born with zero frequency. This frequency typically changes The fact that excitability is a feature that relies on global
very fast with the parameter as its value is moved away fronproperties precludes, in principle, a systematic model deriva-
the bifurcation value. Therefore, when coupling class Il ex-tion. This is the reason underlying the large variety of models
citable units there is a large range of available frequencieshat appear in the literature. However, as stated in 8.
which gives rise to collective behaviors that can be distin-given a system with &ery) degenerate singularity, the local
guished from those observed in populations of coupled classtudy of the degenerate diagram and of its perturbations con-
| systems. Noise also produces different signatures on eadhins information that is of global character for tfiess de-
class, because of the same reason. Therefore, it is of interegéneratg perturbations of the singular vector field. This
to distinguish between both types. In spite of this, achievingstatement provides a clue of how to go around the problem
a unified description is always appealing among other reaef the global features of excitability. Namely, we will look
sons, because of the simplicity of having a single modelfor a singular vector field with a degenerate bifurcation dia-
instead of many different ones. A single model would pro-gram that can unfold into less degenerate ones, some of
vide an understanding of the basic common features undewhich display class | and some of which display class Il
lying all classes of excitability. In the case of coupled units,excitability. The first necessary feature of the model is the
having a unified description would allow one to study tran-existence of astablg fixed point. On the other hand, we
sitions among behaviors that so far have been studied withineed a singular vector field such that, arbitrarily close to it
a restricted model and, in doing so, it would be possible tqin the space of vector fielfishere are(i) vector fields with
find different, unexplored behaviors. Needless to say, undem stable limit cycle whose size goes to zero as we get closer
standing the way in which a property of an excitable unitto the singular vector fieldji) vector fields with three fixed
translates into a particular collective behavior is a most im-points, a pair of which is able to collide at a saddle-node
portant issue since, in living organisms, excitable cells areifurcation. The winged cusp is the example of a degenerate
interconnected forming populations that can display emersystem in which a single fixed point can split up in three.
gent behavior. Furthermore, the unfolding of the cusp contains diagrams

The reason for the variety of models of excitability that where these fixed points can collidie pairg at saddle-node
are present in the literature lies in the global nature of théifurcations. Therefore, we want to combine the cusp with a
dynamical components that are necessary to build an exciHopf bifurcation. In a way, we are looking at tlidegener-

Il. BUILDING A GENERIC MODEL OF EXCITABILITY
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FIG. 2. Behavior of the system Eqg&l) for e=0.2 (a) and € A+ @ I — =

=1 (b) and various initial conditions. Notice the different scale on L . . | . L L
the horizontal axis, which reflects the fact that phase space excur- 0.2 0}-34 06 0.8
sions become very large asdecreases. u, (arb. units)
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16 two-di . | t ith onl fixed point that FIG. 3. The bifurcation diagram of the generic model of excit-
atg two-dimensional system with only one fixed point tha ability given by Eqgs.(5) with e=0.2 anduy=0.1. Both the dia-

res_ults from thg collapse of one limit _CyCIe and three fixedgrams of class | and class Il excitabilityee Fig. 1 are contained in
points[9]. The linear part of the resulting degenerate vector;

field, at the fixed point, is the nilpotent matri)géﬁ. Any

\c/)(:gg:rgse[lfo\]/wth such a linear part can be written, up to thlrdis able to display the different two-dimensional scenarios of

excitability described in the Introduction. In Fig. 3, we dis-
play the phase portraits of the system fop=0.1 ande

=Y =0.2. Notice that in region | we find the typical two-
) ) ) 3 dimensional excitability scenario associated to the FitzHugh-
y'=AX"+Bxy+ Cx%y+Dx". (3)  Nagumo equation&lass | excitabilty. As u, is increased, a

Hopf bifurcation takes place giving rise to oscillatory behav-
This corresponds to the Takens-Bogdanov normal form up t@yr (as observed in region)Il Interesting enough, in this
third order. We keep terms of up to third in order to guaran-phase portrait, this oscillation is destroyed at an Andronov
tee the existence of up to three fixed points in the unfoldingifurcation asu, is increased towards region V, where three
of the degenerate system we are seeking. Now, for genergked point coexist: an attracting fixed point, a saddle, and a
values,A andD, Eqgs.(3) have two fixed points: (0,0) and repellor. In region V, the stable manifold of the saddle acts as
(—A/D,0). Therefore, we sek=0 in order to have a unique 3 threshold for perturbations of the attractor, as it is typical of
fixed point. Rescaling the variables,y, and time, Eqs(3)  class Il excitability. Notice that we have labeled each topo-
can be rewritten as logically distinct dynamical behavior with a different num-
ber, keeping the same labeling as that in Fig. 1.
X'=y, We have not proved that the unfoldiig) of Egs.(4) is
universal[8]. However, it does contain all the behaviors that
;1 ) 3 characterize the different models of excitability in the plane.
y =Xy Xy =X (4)  This means that the model, as a family of flows that depends
on a set of parameters, not only displays excitable behavior
where e>0 and the choice of negative cubic coefficientsf.Or certain parameter values but also “”defgo“ﬁ the bifurca-
guarantees the global attractive nature of the unique fixe ?PS that moﬁels C.)f class | and gllass I excn?b!hrt]y unldergo.
point, x=0, y=0. Equation(4) is the degenerate system | 'S mearrl]st at, glvei,;n an ex?ta © slysteLno el'(t err(;,ass | or
whose unfolding provides the expected generic model of exS assd!l, ¢ eredlsl ac angefo variables that rt]a ?S the corre-
citability. It corresponds to a third-order Takens-Bogdanovls’pon flng mode s;;stem 0 equatllons |rr]1to X ‘Ia do('@;] at
normal form in which some of the quadratic coefficients Van_e;stbor arange o par_amete_r values that Include the e>.<C|t-
ish. The parameter provides a measure of how excitable the able ehavior and the bifurcation that characterizes the bifur-
system is. As illustrated in Fig. 2 the smaller théhe more catlg)n clac?;. th t | iaoldispl
excitable the system is, as reflected in both the size of thg\e S %?cnallg?)ilﬁgs o(ta)sg?\rlzgq(?nerelgtggfe, \s/;‘gt e(sgpF?gss
excursion in phase space after the fixed point is perturbe —6. Thus, the model not only displays behaviors that are

and how fast the trajectory eventually becomes independe% ologically equivalent to those observed in models of class
of the initial condition. polog y €d

We show now that an unfolding of this singular vector I and cyl’ass Il excitability, .bUt IS _a!so a'ble to reproduge the
' . shape” of the corresponding spiking signals. Thus, given a
field, given by o , X

spiking signal produced by an excitable system, we expect to

= find a set of parameters for which our model fits the signal. It

=Y is important to note that the vector field in E{S) is stan-

dard, i.e., the dynamical variables are related to each other by

' Lo 32 means of temporal derivation. Thus, the fitting of the model
Y T HoT X F uayt exy Xy ®) to the observed spiking signals is always possible and algo-
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FIG. 4. Membrane potential as a funcion of time recorded in an  FIG. 6. Time series of vs t obtained using Eqs2) with €,
experiment done with the medicinal lee¢olid line) and best fit  =0.15 ande,=1 (solid line) and best fit using the variabit) of
using the variable(t) of the generic model Eq$5) (dashed ling the generic model Eq$5) (dashed ling

rithmic [11]. We show several examples in the following

section. belonged to. This is displayed in Fig(aJ, where we have

plotted a two-dimensional cut of the four-dimensional pa-
rameter space of Eqs¢5) that contained the point with the
fitting parameter valuegthe asterisk in the figujeIn par-

In this section we probe the ability of our model to repro- ticu'lar, We can obserye that t.he best fit corresponds to a
duce the spiking signals observed in three different excitablé€9i0n With only one fixed point. On the other hand, the
systems. The first system we analyze corresponds to an efting procedure provided a value @f=0.333, which indi-
perimental record of the membrane potential of a particulafat€S the excitability of the system. Given another set of
neuron in the medicinal leedti2]. The neuron propagates an XPerimental data, a similar procedure could have been used
action potential upon stimulation. We show in Fig. 4 onel0 determine a higher dimensional model for the current sys-
action potential that arises due to a stimulus in the form of 46M When coupled to the time-dependent stimulus. In par-
square pulse of finite duratigisolid line) and the equivalent ticular, if we had a data set obtained with a square pulse
signal that we obtain using our model E¢8) (dashed ling symulus _of long enough duration, it would have peen pos-
We fitted the experimental record once the stimulation wasSiP!€ O fit the model in such a case and determine the pa-
turned off: had we also included the part while the stimulug@Meters that are mostly affected due to the stimulus. In this
was on, we should have coupled our model equations to ¥ it would have been possible to construct the higher
time-dependent stimulus. Basically, we wrote down our ge_dlmensmnal model mentioned before.

IIl. REPRODUCING OBSERVATIONS WITH THE MODEL

neric model in the general form We show in Fig. 5 the plot of a time series obtained via a
numerical simulation of the FitzHugh-Nagumo equati¢hs
x'=y, (solid line) and two series that we obtained using our model
Egs. (5) (dashed ling The simulation of the FitzHugh-
y’'=A+Bx+Cy+Dxy—Ex®—Fx?y, (6) Nagumo equations was done using0, ®=0.08,a=0.7,

and b=0.8 for which Egs.(1) have only one fixed point,
determined the values &, B, C, D, E, andF that provided which is stable. In this case we found one fit that reproduced
the best fit ofx(t) to the data and then rescaled the variablesrery well the spiking part of the signal, but which tended
S0 as to go back to the for(®). In this way we could deter- quite slowly to the fixed poinfshown in Fig. %b)] and an-
mine the region of parameter space where the fitting modedther one that reproduced better the approach to the fixed

T T T T T T T
(@) (b)

- 2 |
) :
g £ ]
£ 2
=
] /

1 1 1 1 1 1 1 |

0 20 40 60 80 0 25 50 75

time (arb. units) time (arb. units)

FIG. 5. Time series of vst obtained using the FitzHugh-Nagunfb) with i=0, &=0.08,a=0.7, andb=0.8 (solid line) and two
possible fits using the variable€t) of the generic model Eq$5) (dashed ling The fit in (a) reproduces the approach towards the fixed point
very accurately, while the one ifi) reproduces the spiking part of the signal better, but tends quite slowly to the fixed point. In any case,
the flows generated with both sets of parameter values are topologically equivalent to one another.
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FIG. 7. Location in parameter space of the parameter values that give the best fits displayed (&) Atig45b), and Fig. &c). In (a)
the values of the other two parameters a¢e:0.333, uo=—30.5, in (b) they aree=0.0136, uo=—213, and in(c) €=0.126, u,
=0.395.

point[shown in Fig. %a)]. In either case, the parameter val- lar, in one-space dimension, an excitatdatended system
ues of the generic modéb) belong to a similar regiorfa  can be defined as one that has a stable homogeneous station-
region with only one fixed point We show the location of ary solution, which also supports a traveling pulsee, e.g.,
the set of parameter values that corresponds to the fit of Fig13]). This definition is also inspired in pulse propagation in
5(a) in Fig. 7(b). In this case, we obtained=0.0136, an nerves. Spatially extended excitable systems are usually of
indication that the system is very excitable. reaction-diffusion type. Reaction-diffusion systems describe
Finally, we fitted a data set obtained via a numerical simuthe dynamics of dilute chemical components in solution.
lation of Egs.(2). We show the datdsolid line and the Their study has increased steadily during the last years for
corresponding fi{dashed lingin Fig. 6. The simulation of their possible applications to living organisii#§. Reaction-
Egs.(2) was done using;=0.15 ande,= 1, for which the diffusion systems display a large variety of patterns. It has
system lies in the region V of Fig. (b). The fitting also recently been proposed that the ubiquity of some of the pat-
provides a set of parameter values for which the model syserns and transitions observed in reaction-diffusion systems
tem (5) has one stable fixed point, one saddle, and one rd-14] can be attributed to the underlying spatially homoge-
pellor. The value ok obtained in this case is=0.13. neous dynamics when this dynamics is described by a planar
In the case of the fits to numerically generated d&tgs.  vector field[15]. In particular, for the case of sets of two
5 and 6, a comparison of the location of the parameter val-reaction-diffusion equations, it has been argued that the ex-
ues in Fig. 7 with those that were used to generate the daiatence and properties of certain patterns can be understood
sets shows that the model is able to reproduce the right timi terms of the collection of planar vector fields that can be
evolution in a region of parameter values in which the modekonstructed via perturbations of the spatially homogeneous
system is topologically equivalent to the systems that genervolution equation$16]. This idea has been applied to the
ated the data sets. Furthermore, in the case of sy&eme Gray-Scott mode[17,18]
also fitted data sets generated with parameter values that

were closer, in parameter space, to the Andronov bifurcation u 2 2

[the curve separating regions V and | in Figb)] obtaining gt WAL= u)+DuV7u, @)
fitting parameter values that were also closer to the An-

dronov bifurcation in the model syste(). Finally, the val- v 5 X

ues ofe obtained with the various fits provide some quanti- 5 ~Uv"—Bu+D, Vo, 8

tative measure of the excitability of the system. As

mentioned in the preceding section, small values of the pag explain why it could display patterns that were similar to
rametere in the model systen(b) correspond o large excur- those observed in the ferrocyanide-iodide-sulffées) reac-
sions in phase space before the system relaxes back to thgn [14], although the Gray-Scott model did not correspond
fixed point and to fast decays onto a trajectory that is indetg an accurate representation of the chemical kinetics of the
pendent of the initial condition, two features of excitability. F|g reaction.

Thus, by fitting the model system to various data we also | the spatially homogeneous case the syst&and(8)
obtain some sort of quantitative comparison of their excit-nas one fixed poiny=1, v =0, that is stable for all positive
ability. In this respect we could say that the data set in Fig. 3\ andB (the physically relevant region, which we will ana-

is more excitable than the one in Fig. 6 and this one, in turn|yze in this paper This stable fixed point can either be the

is slightly more excitable than the one in Fig. 4. only one or can coexist with other two. For valuesfofind
B for which the only spatially homogeneous fixed point is
IV. EXCITABLE REACTION-DIFFUSION SYSTEMS u=1, v=0, the spatially extended systerf® and(8) dis-

play a large variety of patterrjid8]. These patterns arise as a
So far we have focused on systems that can be describedsponse to a finite perturbation. Namely, initial conditions
by sets of ordinary differential equations. However, excit-that are arbitrarily close to the homogeneous fixed point re-
ability is also displayed by spatially extended systems andax back to it, and a large(finite) perturbation is necessary
sometimes, it is even defined within this setting. In particu-for the system to settle onto a spatially inhomogeneous pat-
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tern (that can also be time dependenthus, the spatially bifurcation on the curve that separates regions Il and I. In
extended system is “excitable.” In particular, it is excitable particular, in region | there is one repellor surrounded by a
for the parameter values at which spot replications are obstable limit cycle. Class Il excitability is contained in both
served. In Ref[16] we argued that this excitable behavior Figs. §a) and 8&b). In fact, all four topologically distinct
could be related to the proximity in parameter space to dehaviors displayed in Fig.() are contained in Fig. 8, al-
saddle-repellor bifurcation, in such a way that diffusion ef-though it is not easy to resolve all regions within the scale of
fectively acted as a perturbation that let the system “cross’the figures. In particular, region VI is too narrow but we have
the bifurcation. anyway indicated its approximate location with an arrow. In
One way to analyze the possible behaviors that the systeany case, the main feature of class Il excitability, the An-
may visit due to the effect of diffusion is to study the systemdronov bifurcation, appears in Fig.(& occurs on the curve
of Egs.(7) and(8) as a planar vector field with the diffusion that separates regions V and |

terms treated as parameteAsy=D,V?u, Av=D,V% Figure 8 is an indication that the excitable features dis-
) , played by the Gray-Scott reaction-diffusion sytefis and
u'=-uv +A(l-u)+Au, (8) at A=0.02, B=0.08, could be related to the fact that
, ) diffusion effectively perturbs the system making it display
v'=uv—Bu+Av. 9 the different classes of excitability encountered in other sys-

tems. Although we do not have a proof for this, having been
ble to find our generic model in a simple extension of the
ray-Scott systeniEqgs. (9)] provides a useful set within

which spatiotemporal excitability can be studied. As men-

tioned before, models of spatially extended excitable systems

8 AAR. A  arbro. are usually of reaction-diffusion type. On the other hand,
Au=5y3AB—A~-0.0026 and Av=y3AB/9~0.0022, reaction-diffusion systems are usually analyzed in terms of

Egs.(9) have one fixed point at* =2y3AB/3A~0.653 and  jypinjtor-activator systems. The Gray-Scott syste(fisand
v* = A/3~0.082 with two zero eigenvalues. Defining new (g) is 5 reaction-diffusion system of inhibitor-activator type,

variables that are zero at this fixed point, performing theyjit ( the inhibitor andv the activator. If we add a constant

linear changes required to transform the linear part of thef)arameteﬂu to Eq.(7) and a constant paramet&o to Eq.
vector field into its associated Jordan form, keeping nonlin-(g) the resulting system

ear terms up to third order, and carrying the nonlinear

changes of variables required to write the system in its nor- au 5 )
mal form, we obtain that, at these parameter values, @gs. 5r = UtHA(L-u)+Au+D, ViU
can be reduced to

Equationg9) may be reduced to Eq) for values ofA and

B nearby those at which spot replications may be observe
In particular, forA=0.02, B=0.08, the reaction-diffusion
systemg(7) and (8) display spot replications fdb,=1 and
D,=0.5. We have found that for these values/ofind B,

Jv
x' =y, E:UUZ—BU-FAU-FDUVZU, (11

’r_ _v3_ 2
y'=17Xy=x"=x%, (10 il remains as an inhibitor-activator system. In the spatially

in a neighborhood of the fixed point=0.653 andu homogeneous case, th?s extended system reduces to our gen-
—0.082. Clearly, Eqs(10) are equal to Eqs(4) with e eral model o_f e>_<C|tab|I|ty(5) f_or certain parameter values.
~0.58. Hence, Eqg9) for parameter values in a neighbor- Therefore, this simple extens!o_n of the Gray—Scott model can
hood of the ' chosen ones should include both two-be used to analyze the transition of spatiotemporal solutions

dimensional excitable regimes. This is, in fact, displayed inof excitable reaction-diffusion systems of inhibitor-activator

Fig. 8 where we have plotted the bifurcation set of H§$. type when the underlying homogeneous dynamics changes

on two two-dimensional cuts of its four-dimensional param-fr(.)m being (.)f class | to being of class Il excnablhty._We
eter space, in a neighborhood of the parameter vahies thlnk.that _thls.can be a very useful tool to study excitable
~0.02, B=0.08, Au=—0.0026, andAy=0.0022. Figure "caction-diffusion systems.

8(a) corresponds to a cut with=0.02, B=0.08 and Fig.
8(b) to one withA=0.011, B=0.08. Class | excitability is
contained in Fig. 8, where region Il corresponds to a situ-  We have found a simple two-dimensional modEgs.
ation with one excitable fixed point that undergoes a Hopf(5)] that is able to display all dynamical behaviors encoun-

V. CONCLUSIONS
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tered in models of class | and class Il excitability. One of thereaction-diffusion Gray-Scott system displays for certain pa-
variables of the mode(x) displays the spiking signals that rameter values can be understood as a consequence of the
are typical of excitable systems. Given that the model equatact that diffusion perturbs the underlying homogeneous dy-
tions are written in standard form, fitting the model to ob-namics in such a way that it effectively visits the behaviors
served spiking signals is always possible and algorithmic. Ijisplayed by our generic model of excitability. On the other
faCt, we have shown the ab|||ty of the model to reproduc%and, we have shown that a Simp|e extension of the Gray_
bqth gxperimental and ngmerically generatec_j data obtainedqott model [Egs. (11)] provides an inhibitor-activator
with different sorts of excitable systems. In this way, for the g4 ction-diffusion system that, in the spatially homogeneous
cases analyzed, we could determine the excitability class tBmit, is able to display both class | and class Il excitability.
which the system thgt generated t_he_signal belongs. Furthef-husy using Eqs(11) it should be possible to study the rela-
more, we also obtained a quantitative assessment of theﬂfonship between different types of reaction-diffusion excit-

excitability by looking at the value of one of the fitting pa- able systems by continuous prolongations of specific solu-
rameters §). tions

We have found that the Gray-Scott reaction-diffusion sys-
tems(7) and(8) contain the generic modgEgs. (5)] when In conclusion, we have presented a general and simple
the diffusion terms are treated as parameftassin Eqs(9)]. model that provides a unifying setting within which the vari-
Thus, we think that the sort of excitable behavior that theous features of excitability can be studied.
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